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Abstract 

  This paper discusses a new, more efficient technique for handling antialiasing of images. This technique is 
capable of overcoming the various problems experienced with current real-time antialiasing techniques. The various 
features associated with the new technique will be discussed in detail as well as how the new technique compares 
with existing techniques in real-time environments through tests in order to come to a conclusion regarding its 
performance capability. The purpose of this paper is to shed light on the advantages of this technique and prove that 
this technique is an efficient alternative to existing antialiasing techniques. 
 
Keywords: AA, SSAA, MSAA, MLAA, FXAA. 
           
 

Introduction  
  Antialiasing (AA) is the process whereby the 
jagged edges of a graphic can be smoothed to give a 
more pleasing and realistic appearance. The process in an 
intense processing technique and therefore faces many 
problems such as incorrect and dirty artifact production, 
flickering animations etc. which in turn require more 
processing power to fix. Many fixes such as increasing 
the sampling rates for example can help with clear image 
production but they are too costly to implement for real-
time applications. Other fixes include development of 
completely new algorithms and complex shaders. 
However, AA has been a barrier when rendering images 
in real-time applications [1]. 

In its infant stages, the two most common go-to 
solutions were the supersample antialising (SSAA) and 
the multisample antialising (MSAA). These were heavily 
used in real-time applications especially video games. 
However, these techniques are not perfect. MSAA does 
not scale well when increasing the number of samples 
and is not completely compatible with modern 
environment rendering paradigms [2][3]. It exemplify 
this problem with numbers, MSAA 8x takes an average 
of 5.4 ms in modern video games with state of the art 
rendering engines (increasing to 7.7 ms on memory 
bandwidth intensive games) on a NVIDIA GeForce GTX 
470. Memory consumption in this mode can be as high 
as 126MB and 316 MB, for forward and deferred 
rendering engines respectively, taking 12% and 30% of 
the rendering time of a mainstream GPU equipped with 
1GB of memory. This problem is aggravated when HDR 
rendering is used, as the memory consumption and 
bandwidth increases even further. 

 
Many alternatives approaches were considered 

but all of them had their own set of problems. The most 
prominent ones are: 

• Most approaches do not deal with diagonal 
patterns, as they can recognize vertical and 
horizontal patterns.  

• The aliasing effects on some shapes such as 
corners in text are clearly visible.  

• Edge detection algorithms detect edges based on 
the difference in pixels without considering the 
surroundings of that edge.  

• Subpixel features and Subpixel motions are not 
implemented/handled properly.  
To deal with these issues the Edge Based 

Antialiasing (EBAA) was developed. This approach 
tackles each of the above mentioned problems separately, 
offering simple, modular solutions. First, for the edge 
detection algorithms, the number and type of edge 
patterns is increased. Second, multi/supersampling and 
temporal reprojection is combined with another 
technique called MLAA (which will be discussed in the 
coming section), so that the real subpixel features and 
subpixel motion can be handled effectively. Finally, for 
more accurate pattern classification, the edge detection 
algorithm is enhanced with better distance searches that 
include low contrast pixels as well. 
 
The Root OF EBAA  
  The Morphological Antialiasing (MLAA) is a 
technique that estimates the pixel coverage of the 
original geometry [3]. To accurately rasterize an 
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antialiased triangle, the coverage area for each pixel 
inside the triangle must be calculated to blend it properly 
with the background. MLAA takes a non antialiased 
image and re-vectorizes the individual objects in the 
image pixel by pixel and then arranges the area with its 
neighbours. Figure 1 describes the process. 
 
 
 
 
 
 
Figure 1: MLAA first finds edges by looking for color 
discontinuities (green lines), and classifies them according to 
a series of pre-defined pattern shapes, which are then 
virtually re-vectorized (blue line), allowing to calculate the 
coverage areas a for the involved pixels. These areas are then 
used to blend with a neighbor. For example, the pixel Copp 
fills the area a of the pixel Cold: cnew = (1-a) . cold +a . copp. 
 

Several MLAA antialising implementations 
appeared after the technique was published such as 
Jimenez’s MLAA [3]. The algorithm has three passes: 
edge detection, pattern detection plus calculation of 
coverage areas, and final blending. Pattern detection is 
performed by locating the ends of an edge, and 
performing hardware bilinear filtering on them. Once the 
ends are reached, the algorithm looks at the crossing 
edges. These crossing edges are the perpendicular edges 
with respect to the direction of a search and are 
represented as the vertical green lines in Figure 1. With 
length and crossing edges information, the coverage area 
is retrieved, and used for the final blending. This MLAA 
implementation was chosen as the starting point for the 
EBAA algorithm which will be explained in detail in the 
coming sections. 
 
The Various Features of EBAA  

This section will detail the various features of 
EBAA and their implementation idea. EBAA is built on 
the MLAA implementation by Jimenez. First, the edge 
detection is improved by using general color information 
along with local contrast adaptation for recognizing and 
handling more edges. Then, as mentioned earlier, the 
number of patterns handled is extended and enhanced for 
a more reliable edge classification. Finally, MLAA is 
combined with multi/supersampling and temporal 
reprojection. Although, EBAA seems similar to MLAA, 
it performs much better and the images produced are 
much cleaner in terms of quality. 
Edge Detection: 

Edge detection is accomplished through the use 
of different information: RGB color, luma, depth, surface 
normal, object ID, or combinations of them. This means 
various methods will detect various types of edges. All 

the types can be combined and used but this puts an 
unnecessary toll on the performance. For EBAA, Luma 
was chosen for four reasons: first, MLAA processes 
edges that occur from color-based (either luma or RGB) 
discontinuities; otherwise artifacts may appear [2]. 
Second, unlike depths and normals, color information is 
always available for the algorithm. Third, it is compatible 
with shading aliasing. And fourth, it is much faster than 
RGB color while maintaining similar performance and 
similar results. For efficiency purposes, EBAA searches 
for edges at the top and left boundaries of each pixel, and 
uses other information from the neighbours. 
Local Contrast Adaptation: To reduce artificial edges 
(caused due to local numerical differences) that reduce 
image quality, an adaptive threshold is performed which: 
a) prevent line searches from stopping at non-
perceptually-visible crossing edges; and b) choose the 
dominant (higher contrast) edge when there are two 
parallel edges on a pixel. 
Pattern Handling: 

The EBAA’s pattern detection can preserve sharp 
geometric features like corners, deal with diagonals and 
perform accurate distance searches. 
Sharp Geometric Features: The re-vectorization of the 
image elements of MLAA tends to round corners on the 
image. Here the crossing edges used for the pattern 
detection are just one pixel long, and this makes it is not 
possible to distinguish a jagged edge from the actual 
corner of an object, which may therefore be wrongly 
processed. 

To avoid this, two-pixel-long crossing edges are 
used instead; this helps in detecting the actual corners 
and ensure that there is no unnecessary processing of 
wrong features of an object. The degree of processing 
applied is defined by a rounding factor r, which scales 
the original coverage areas obtained by one-pixel-long 
crossing edges. The recommended range for r is [0:0-
1:0]. 
Diagonal Patterns: The filter-based techniques available 
now search for patterns made of horizontal and vertical 
edge patterns. This translates into badly aliased results 
(in space and time) for diagonal lines (see Figure 2). 
 
 
 
 
 
 
Figure 2: MLAA (left) and EBAA (center) re-vectorizations 
(blue lines) of near-45o diagonals. Thanks to the new 
handling of diagonal patterns (green lines), EBAA 
reconstructs the edge accurately. Right: The new approach 
requires just the same information as for the orthogonal case: 
distances dl and dr; and crossing edges e1 and e2 (right). 
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  EBAA introduces a diagonal pattern detection 
that helps detecting the diagonal patterns. Here, a 
diagonal re-vectorization (Figure 2, center) is used, 
instead of the original orthogonal re-vectorizations that 
handle only horizontal and vertical edges (Figure 2, left). 
The mechanism uses a precomputed texture that takes the 
diagonal pattern, defined by the distances to both ends of 
the diagonal line and the diagonal crossing edges 
information (Figure 2, right); and outputs the accurate 
coverage areas. 
   Calculating diagonal coverage areas consists of 
the following steps, for both the top-left to bottom-right 
and the bottom-left to top-right diagonal cases: 

• First, search for the diagonal distances dl and dr 
to the left and to right end of the diagonal lines.  

• Then fetch the crossing edges e1 and e2.  
• And finally use this input information (dl  , dr, 

e1, e2), defining the specific diagonal pattern, to 
access the precomputed area texture, yielding 
the areas at and ab.  

Accurate distances search: Obtaining accurate edge 
distances is the most important aspect of pattern 
classification. 
  Jimenez’s MLAA makes extensive use of 
hardware interpolation (bilinear filtering) to identify 
patterns. Hardware bilinear filtering can be used as a way 
of fetching and encoding up to four different values with 
a single memory access (otherwise it would be necessary 
to perform one memory access per value to fetch). This 
is exploited to fetch two edges at once, allowing to 
partially reduce bandwidth usage. However, it does not 
check crossing edges during the search, which may lead 
to inaccuracies in pattern detection [3]. 
  Unfortunately, fetching the crossing edges using 
the MLAA scheme requires two linearly filtered accesses 
per iteration, doubling the bandwidth usage. EBAA uses 
an approach similar to the MLAA approach but slightly 
alters it by generalizing the approach for two 
dimensional accesses which fetches four different values 
with a single memory access. 
  Jimenez’s MLAA uses a linear interpolation of 
two binary values producing a single floating point 
value: 
 
 
where b1 and b2 are two binary values, and x is the 
interpolation value. If x ≠ 0.5, this produces a set of four 
unique values: {0, 1 – x, x, 1}. So, it is possible to find a 
decoding function f −1 that recovers the original b1 and 
b2 binary values. Instead EBAA performs bilinear 
interpolation of four binary values as follows: 
 
 
 

where y is the interpolation value in the second 
dimension. By choosing a value of y = 0.5x, it is possible 
to create a binary base that allows to encode a bilinear 
interpolation between four binary values into a single 
one, and still be able to recover the sixteen possible 
original values. EBAA uses this method to fetch the four 
b1, b2, b3 and b4 binary edge values. 
 
Subpixel Rendering: 

The MLAA algorithm uses a single sample per 
pixel. This leads to subsampling, thus making sure that 
the real subpixel features cannot be implemented (see 
Figure 3, no AA and MLAA). Having lower number of 
sample may reduce the bandwidth required but the more 
samples per pixel the algorithm has to process, the better 
the reconstruction of the antialiased image will be. The 
easiest method would be incorporating MSAA into 
MLAA. This method involves applying MSAA over 
each subsample group of MLAA separately and then 
averaging them together. However, this approach leads 
to blurry results (see Figure 3, MSAA 4x with MLAA). 
This is due to MLAA and MSAA making different 
assumptions about the coverage of the samples, so they 
cannot converge even when the samples per pixel count 
is increased. 
 
 
 
 
 
 
 
 
 
Figure 3: A difficult case for no AA, MLAA [3] and EBAA 
1x: a white grid over a black background at mid-distance 
(top), prevents the reconstruction of accurate coverage; at a 
longer distance (bottom, zoomed in), the continuity of the grid 
is broken, preventing its recovery. Using extended patterns to 
deal with sharp geometric features and correct offsets allows 
for more accurate area estimation, making EBAA S2x and 4x 
converge to the MSAA 4x reference. Note how the naive 
application of MLAA over samples from MSAA 4x improves 
the connectivity of the grid, but blurring artifacts appear. 
 

EBAA’s solution here is to calculate the offset 
position of each subsample inside the pixel, in order to 
calculate their coverage areas accurately. Through this 
solution, when the different subsample groups are 
blended together, the average color at the center of the 
pixel is obtained as expected. Then, the only required 
change is to use different precomputed areas textures for 
each subsample position. This approach is general 
enough to handle additional samples coming from 
standard approaches like temporal supersampling and 
spatial multisampling, so several configurations are 
possible. In particular, the following modes are found to 
be the most interesting from a performance/quality 
perspective: 
 

• EBAA 1x: includes accurate distance searches, 
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local contrast adaptation, sharp geometric 
features and diagonal pattern detection.  

• EBAA S2x: includes all EBAA 1x features plus 
spatial multisampling.  

• EBAA T2x: includes all EBAA 1x features plus 
temporal supersampling.  

• EBAA 4x: includes all EBAA 1x features plus 
spatial and temporal multi/supersampling.  

 Figure 3 shows how EBAA 4x performs better to 
MSAA 4x. This makes EBAA better than simply 
combining MSAA and MLAA. 
 
Temporal Reprojection: 
While temporal supersampling helps efficiently render 
subpixel features, combining it with naive resolve 
approaches like linear blending results in very noticeable 
artifacts, commonly referred to as ghosting (see Figure 4, 
left). A better solution is to re-project instead the 
previous frames’ subsamples into the current frame [3]. 
However, open regions still suffer from ghosting (see 
Figure 4, middle). To minimize this, EBAA weights the 
previous subsample by w, which depends on the 
difference in velocity with respect to the current 
subsample: 
 
 
 
 
where vc and vp are the velocity of current and previous 
frames, and K is a constant that determines how much 
EBAA attenuates previous frame according to velocity 
differences. Then, the final resolve is performed as 
follows: 
 
 
where c is the final resolved color, cc the color in current 
frame, and cp the color in the previous frame. Such a 
solution robustly handles open regions but at the expense 
of no antialiasing on such regions (see Figure 4, right). 
However, the other components of EBAA will usually 
antialias these regions, effectively eliminating the 
problem. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Left: Using a naive resolve results in visible 
ghosting. Middle: Reprojection mitigates these artifacts but 
does not completely remove them. Right: The addition of 
velocity weighting allows to completely remove ghosting. 
 
 
 

Results 
Figure 5 shows a comparison of EBAA 

technique against MSAA, SSAA and MLAA. The 
screenshots are all 1080p images that have been captured 
from a system running on the AMD RadeonTM HD 7970 
clocked at 1000 Mhz and Intel® CoreTM i7 3770 clocked 
at 3500Mhz. As mentioned earlier, subpixel modes allow 
higher thresholds for edge detection, which lowers 
execution times without visible loss of image quality. 
The various games used for the test are: Assassin’s  
Creed® Brotherhood, Borderlands® 2 and Crysis® 3 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: EBAA 1x can produce results close to SSAA 16x, 
with EBAA T2x having a performance on par with the fastest 
MLAA implementation [3].The left image of the first row has 
MSAA only enabled. The left image of the first row has SSAA 
enabled. Finally in the third row, the left image has MLAA 
enabled. In all of the rows the right image has EBAA 
enabled. The improved edge/pattern detection allows to 
antialias difficult cases (first row). Subpixel features handling 
allows preserving connectivity and accurately representing 
distant objects (second row). The detection of sharp geometric 
features allows bettering reconstructing corners and 
intersections. Diagonal pattern detection allows accurate 
reconstruction of such shapes (third row). 
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As evident from the test results, EBAA not only 
solves limitations of just MLAA in particular, but of all 
postprocessing antialiasing filters in general. With 
respect to memory consumption, the most demanding in-
game configuration requires only 38% of the memory 
used by MSAA 8x, resembling the results of SSAA 16x. 
Also evident is that EBAA is able to perform better than 
MLAA, while delivering superior overall quality, both in 
gradients and shading. 
  
Conclusion  

Through my personal experience and the 
various tests performed, I can conclude that this new 
technique tackles all the weak points remaining in filter-
based antialiasing solutions. EBAA is a unique 
combination of a filter-based antialiasing technique with 
standard multi/supersampling approach and temporal 
reprojection. EBAA can be considered as a spiritual 
successor to MLAA as it is a combination of improved 
MLAA strategies and spatial and temporal 
multi/supersampling which accounts for a very robust 
solution, combining the different synergies for better 
fallbacks. EBAA delivers very accurate gradients, 
temporal stability and robustness, while introducing 
minimal overhead, making it an obvious choice for low-
end configurations. We believe that through EBAA, 
developers can bring high quality antialiasing 
performance to mid-range GPUs, and highly recommend 
it to anyone who would like to increase their graphical 
fidelity without comprising memory bandwidth. 
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